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As a multifaceted concept, the learning of angle concepts takes years to achieve and is beset 

with challenges. This paper explores how the processes of constructing and validating a 

learning progression in geometric reasoning can be used to generate targeted teaching advice 

to support the learning of angle concept. Data from 1090 Year 4 to Year 10 students’ ability 

to reason about geometric properties and deduce angle magnitudes were analysed. Rasch 

analysis resulted in eight thinking zones being charted. Students’ responses to the angle items 

within this larger data set were analysed with a focus on how reasoning about angles 

developed. The result is a five-stage framework for learning angle concepts. 

Teaching that is informed by effective assessment data has a significant, proven effect 

on learning (Goss et al., 2015). Designing targeted teaching advice that can nurture 

mathematical reasoning has become even more vital in light of the 2018 Programme for 

International Student Assessment (PISA) results (Thomson et al., 2019). Australian 

students’ mathematical problem solving ability is in a long-term decline, equivalent to the 

loss of more than a year’s worth of schooling since 2003. Australian students are particularly 

weak in the content areas of geometry (Thomson et al., 2017), a discipline that is linked to 

measurement and spatial reasoning.  

Understandings of measurement are embedded in all curriculum in the STEM (Science, 

Technology, Engineering and Mathematics) areas. Concepts such as length, volume and 

angle take years to learn and are beset with challenges. A case in point is the learning of 

angle measurement. The concept of angle can mean different things in different situations. 

When viewed as a static image, angle is defined as a geometric shape, a corner or two rays 

radiating from a point, then as a dynamic image, angle is a rotation and a measurement of 

turn. Research shows persistent student difficulties with angle concepts, including focusing 

on physical appearances such as the length of the arms or the radius of the arc marking the 

angle when comparing angles, inability to see angles from different perspectives and 

contexts, and errors in measuring the angle magnitudes using a protractor (Gibson et al., 

2015; Mitchelmore & White, 2000). In the Australian Curriculum: Mathematics (Australian 

Curriculum Assessment and Reporting Authority [ACARA], n.d), the concept of angle is 

introduced under the sub-strands of geometric reasoning from Year 3 onwards.  In Year 5, 

students are expected to use degrees and measure with a protractor and in Year 6, to find 

unknown angles. Year 7 refers to angle sums in triangles and quadrilaterals. The curriculum 

expectation is that the students will have the necessary understanding of angle and angle 

measurement to be able to reason about angle sizes by Year 6 and Year 7. It is presumed that 

teachers are able to make the necessary connections among and across content strands and 

teach for mathematical reasoning (Lowrie et al., 2012). International results obtained to date 

do not reflect such a reality.  

With STEM becoming a key focus in education, research on learning progressions can 

help transform the teaching and learning of mathematical reasoning. In this paper, we survey 

and analyse Australian students’ knowledge of and reasoning about angle measurement 

within a more comprehensive geometric learning progression.  
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Theoretical Framework 

Learning progressions are a set of empirically grounded and testable hypotheses about 

students’ understanding of, and ability to use, specific discipline knowledge within a subject 

domain in increasingly sophisticated ways through appropriate instruction. They can relate 

to a specific instructional episode, develop a curriculum or in our case, charting mathematics 

learning that encompasses different but related aspects of mathematics. Our purpose is to 

equip teachers with the knowledge, confidence and disposition to go beyond narrow skill-

based approaches to teach for understanding and mathematical reasoning.  

Reasoning is a cognitive process of developing lines of thinking or argument to either 

convince others or self of a particular claim, solve a problem or integrate a number of ideas 

into a more coherent whole (Brodie, 2010). Mathematical reasoning is about constructing 

mathematical conjectures, developing and evaluating mathematical arguments, and selecting 

and using various types of representations (National Council of Teachers of Mathematics 

[NCTM], 2000). Mathematical reasoning encompasses three core elements: (1) core 

knowledge needed to comprehend a situation, (2) processing skills needed to apply this 

knowledge, and (3) a capacity to communicate one’s reasoning and solutions. Justifying and 

generalising are two key characteristics of mathematical reasoning (Brodie, 2010). To justify 

a position, individuals need to connect different mathematical ideas and arguments to 

support claims and conjectures. To generalise requires individuals to reconstruct core 

knowledge and skills when making sense of new situations. Both help improve reasoning 

skills, cement core knowledge and may lead to the development of new ideas. 

Engaging in mathematical reasoning is a social act, directed by a semiotic process (Bussi 

& Mariotti, 2008). Symbols (°, ∠), lines (∟, ⊥, ∡), shapes and objects serve as signs and 

artefacts for a particular purpose. An artefact (e.g., a folded piece of paper or written words) 

is a tool or an instrument that relates to a specific task to be used for a particular purpose. A 

sign is a product of a conjoint effort between it and the mind to communicate an intent, such 

as indication of a right angle. The use of signs and artefacts is never neutral but is intentional 

and highly subjective, linked to the learner’s specific experience and requires the 

reorganisation of cognitive structures. From a cognitive perspective, how well a learner 

reasons mathematically is largely dependent on the degree of connectedness among multiple 

representations (artefacts), visualisation and mathematical discourse (Seah & Horne, 2019). 

Angle is multifaceted and can be represented in various ways. Visualisation of angle 

artefacts requires a dynamic neuronal interaction between perception and visual mental 

imagery. The viewers need to draw on past experiences and existing knowledge to make 

sense of the visualised artefacts. The context within which perception takes place plays a 

critical role in determining the type of imagery gaining attention. Individuals’ beliefs about 

their own ability and how mathematics is practiced also play a critical role in this process. 

Context and beliefs are influenced by the mathematical narratives and routines learners 

experience. Words and terminologies produce certain visual images. For example, Gibson 

et al., (2015) found that whole-object word-learning bias led many pre-schoolers to judge 

angle size by the side length. This was also found with older children (Mitchelmore & White, 

2000). During a mathematical discourse, communication can take a combination of 

linguistic, symbolic or diagrammatic forms. How they are being used reveal the users’ 

thought processes and in turn shapes their thinking. Analysis of students’ responses to angle 

measurement tasks will enable researchers to document and chart how students’ reasoning 

about angle measurement progressed. This can then help design instructions that move 

students from where they are to the next level of their learning journey. 
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Method 

Drawing on the work of Battista (2007), a draft geometric learning progression was 

developed that saw the development of geometric reasoning as moving through five levels 

of reasoning: visualising physical features, describing, analysing, and inferring geometric 

relationships, leading to engaging in formal deductive proof (Seah & Horne, 2019). The data 

presented here was taken from the Reframing Mathematical Future II study into the 

development of learning progression for mathematical reasoning. The participants were 

middle-years students from across Australia States and Territories. The first group – the trial 

data, was taken from two primary and four secondary schools across social strata and three 

States. They were asked to participate in trialling the assessment tasks to allow for a wider 

spread of data being collected. The trial school teachers administered the assessment tasks 

and returned the student work to the researchers. The results were marked by two markers 

and validated by a team of researchers to ascertain the usefulness of the scoring rubric and 

the accuracy of the data entry. The second group – the project data, came from 11 schools 

situated in lower socioeconomic regions with diverse populations across six States and 

Territories. The project school teachers marked the items and returned the raw score instead 

of individual forms to the researchers. They also received ongoing professional learning 

sessions and had access to a bank of teaching resources. There are two angle measurement 

tasks, Geometric Angles 1 and 2 (coded as GANG) reported here (Figure 1).  

Geometric Angles 1 
You will need the shape you made in class. The steps and diagrams below show how you made the shape. 

 
Step 1   Fold an A4 paper in half lengthwise to make a crease line in the middle of the 

page.  
Step 2  Fold two corners to the middle at the bottom 
Step 3  Fold two corners to middle at the top 
Step 4  Fold the new corners on the sides at the bottom to the middle 
Step 5  Do the same with the top  
 
a [GANG1] 

Phoebe made the same shape that you made using A4 paper.  She said her shape is a rhombus.  
Do you agree? Explain your reasoning. 

 
b [GANG2] 

When Phoebe unfolds the paper, she found a number of crease lines. Find the marked angles on the 
crease line:  Angle f = ____ Angle h = ____ Angle s =_____ 
Explain how you work out the angles.  

Geometric Angles 2 
A four-sided shape is folded from a sheet of A4 paper using the following instructions.   

Step 1      Step 2        Step 3 
a [GANG3] 

What is the name of this shape?                   
 ________________________________ 
Explain your reasoning. 

b [GANG4] 
Unfold the paper and find the size of each marked angle. 
Angle d = ____________       Angle e = ____________ 
Angle f = _____________               Angle g = ____________ 

Explain your reasoning. 

Figure 1.  Geometric angles task 1 and 2. 
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h 

s 

f 

 

d 
e 

f 
g 



Seah and Horne 

348 

Note that both tasks were used in different forms rather than administered together. Both 

tasks begin with a question on geometric properties followed by deductions of angle 

magnitudes. In GANG1, the teacher was instructed to guide the students to first fold the 

shape and use it to answer the angle measurement question. In this way, the difficulty in 

following the origami instructions was avoided. As an artefact, the folded shape also served 

as a context and a tool to help students comprehend the diagram depicting the crease lines. 

In GANG3, students were shown the steps taken to fold a shape. No further information was 

given. Items GANG2 and GANG4 ask students to work out the magnitude of the angles 

formed by the crease lines. While the tasks GANG1 and GANG3 do not ask students 

specifically to use angle, angle properties are one component of shape classification. The 

focus in this paper is on reasoning about angle magnitude in GANG 2 and GANG 4. 

Rasch partial credit model (Masters, 1982) using Winsteps 3.92.0 (Linacre, 2017) was 

used to analyse students’ responses on the larger set of geometric reasoning tasks including 

these for the purpose of refining the marking rubrics and informing the drafting of an 

evidence based learning progression. Rasch analysis of the validity of the underlying 

construct through the idea of fit to the model produced eight thinking zones in geometric 

reasoning (Seah & Horne, 2019). To validate the zones, the research team interrogated 

student responses located at similar points on the scale to decide whether or not there were 

qualitative differences in the nature of adjacent responses with respect to the sophistication 

of reasoning involved and/or the extend of cognitive demand required (see Siemon & 

Callingham, 2019).  

SCORE DESCRIPTION for GANG1  DESCRIPTION for GANG3  

0 No response or irrelevant response 

1 
Disagree it is a rhombus based on appearance rather 
than properties 

Diamond or other incorrect shape 

2 
Disagree it is a rhombus but claim it is a parallelogram 
with some properties  

Quadrilateral because it has 4 sides OR because it 
looks like a kite 

3 
Agree it is rhombus but insufficient or incorrect 
properties to define it or claims it is a parallelogram and 
includes all properties 

Kite OR unable to name, but gives side and/or angle 
properties of a kite 

4 

Agree it is rhombus. Explanation needs to include 
necessary and sufficient properties, that is, it has 4 
equal sides, or it is a parallelogram with one of the 
following properties: 

• Adjacent sides equal 

• Diagonals bisect each other at right angles or 
diagonals bisect the angles 

• Two lines of symmetry 

Kite because two pairs of adjacent equal sides are 
equal OR because at least a pair of opposite angles 
equal and at least one pair of adjacent sides the same 
length OR because it has a pair of opposite angles 
equal and a line of symmetry. May include other 
properties. 

SCORE DESCRIPTION for GANG2 DESCRIPTION for GANG4 

0 No response or irrelevant response 

1 Incorrect angles 
Incorrect with little/no reasoning, may include one 
correct angle 

2 
At least 2 angles correct but no reason given, or one 
angle correct with correct reasoning 

At least two angles correct with an attempt at 
explaining reasoning 

3 
Two angles found correctly with sensible reasons or all 
angles correct with insufficient reasoning 

Angles correct (d = e = 45°, f = 90° or right angle, g = 

135°) but reasoning sparse and incomplete 

4 

All angles correct with clear reasons given relating to 
the folding and properties. 
F = 45°; h = 45°; s = 135° (e.g., Folding corner to centre 
creates half right angle; All angles around centre of 
side equal so any 2 make 45°or Four angles of 
quadrilateral add to 360°) 

Angles correct. Reasoning includes justifies d as half of 
the right angle in corner or as angles in an isosceles 
triangle, and g on the basis that the four angles of the 
kite shape have to add to 360° 

Figure 2.  Geometric angles task scoring rubrics. 

In the following, we focus on students’ responses to the angle items to determine their 

usefulness and fit to the overall learning progression framework.  
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Findings 

Based on 1041 students’ responses from the larger study, the zones of geometric 

reasoning were established as precognition; recognition; emerging informal reasoning; 

informal and insufficient reasoning; emerging analytical reasoning; property based 

analytical reasoning; emerging deductive reasoning; and logical inference-based reasoning 

(Seah & Horne, 2019). Student responses were coded so that GANG3.1 meant a response at 

Level 1 on the rubric to the question GANG3. Table 1 shows how the responses to the 

GANG questions were spread across the zones (with Zone 8 being the highest level). 

Table 1 

Excerpt from the variable map for geometric reasoning (n=1041). 

Zone 8   GANG3.4 GANG4.4 

Zone 7 GANG1.4 GANG2.4   

Zone 6  GANG2.3 

GANG2.2 

 GANG4.3 

Zone 5    GANG4.2 

Zone 4 GANG1.3 

GANG1.2 

GANG2.1 GANG3.3  

Zone 3 GANG1.1  GANG3.2  

Zone 2   GANG3.1 GANG4.1 

Zone 1     

To validate these zones, the research team interrogated student responses located at 

similar points on the scale to decide whether or not there were qualitative differences in the 

nature of adjacent responses with respect to the sophistication of reasoning involved and/or 

the extent of cognitive demand required. For example, GANG1.2 (disagree it is a rhombus 

claiming it is a parallelogram) and GANG1.3 (agree that it is a rhombus with insufficient 

explanation about its properties) were located in zone 4, indicating similar level of thinking. 

Reasoning about a kite (GANG3.4 and GANG4.4) were located in the highest level (Zone 

8), perhaps revealing students’ lack of exposure to this concept. The angles on the rhombus 

were also easier to deduce than those on the kite.  

Table 2 

Breakdown of student responses on geometric properties (GANG1 and GANG3). 

Score Trial Data (n=230) Project Data (n=433) 

GANG1 Yr 7 Yr 8  Yr 9  Yr 10  Yr 7 Yr 8 Yr 9 Yr 10 

 n=83 n=90 n=31 n=26 n= 171 n= 204 n= 37 n= 21 

0 20.5 45.6 19.4 3.8 36.3 32.8 24.3 14.3 

1 30.1 13.3 9.7 0 19.3 15.2 0 38.1 

2 12.1 11.1 12.9 7.7 4.1 11.3 2.7 47.6 

3 33.7 17.8 48.4 73.1 36.8 27.9 62.2 0 

4 3.6 12.2 9.7 15.4 3.5 12.8 10.8 0 

Score Trial Data (n=157) Project Data (n=270) 

GANG3 Yr 4 Yr 5  Yr 9  Yr 10  Yr 7 Yr 8 Yr 9 Yr 10 

 n=31 n=59 n=30 n=37 n= 23 n= 113 n= 32 n= 102 

0 22.6 23.7 27.6 35.1 0 17.7 53.1 17.7 

1 77.4 66.1 27.6 32.4 17.4 21.2 31.3 28.4 

2 0 10.2 13.8 29.7 69.6 21.2 15.6 32.4 

3 0 0 34.5 2.7 13 31.9 0 20.6 

4 0 0 0 0 0 8 0 1 
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Because the Rasch model is probabilistic, an in-depth analysis of students’ responses to 

the items were conducted. A total of 663 samples for Geometric Angles 1 task and 427 

samples for Geometric Angles 2 were collected. Table 2 shows the breakdown of students’ 

responses for reasoning about geometric properties. Both cohorts performed better in the 

rhombus item than the kite item. The majority of students found reasoning about geometric 

properties difficult and on average, around 25% of students did not respond. In GANG1, 

students tended to define a rhombus based on its orientation or what it looks like: 

Year 7:  I believe wasn’t wide enough to become a rhombus and the shape is a diamond (score 1). 

Year 10:  It can be depending on how you look at it. It could be a diamond or rhombus (score 2). 

Year 9:  … when you hold the shape so that the pointed parts point from left to right you would see 

that it is in the shape of a rhombus (score 3). 

Only a handful of students accurately defined a rhombus, as having ‘4 equal sides’; none 

included the square as part of the rhombus family. Further, when the term angle was used, it 

was to emphasize that a rhombus has no right angle, or incorrectly stating that the shape has 

‘four exactly the same sides with 4 acute angles’. In GANG3, 76.4% of students provided a 

2D name to the folded shape, such as triangle (16%), irregular rectangle/square (31.2%), 

polygon (6.4%) and quadrilateral (8.9%). None of the trial school students were able to 

correctly state the properties of a kite.  

Nevertheless, inability to reason about geometric properties did not appear to influence 

the deduction of angle magnitudes. Comparison of students’ responses by year level shows 

that project schools’ performance was slightly better and that the angles in the rhombus were 

easier to deduce than those in the kite (see Table 3). There was still a large number of no 

response or irrelevant responses received from the trial data (27.8% and 38.5% in GANG2 

and GANG4 respectively).  

Year 9:  I worked this out by counting the crease of each angle (wrote 3, 3, 2 in GANG2). 

Year 4: I measured each line and quartered it (wrote 2 cm, 3 cm, 4 cm, 5 cm in GANG4). 

Other students (47.8% and 28.9% respectively) either wrote the name of the angles as 

acute or obtuse or were only able to give the magnitude of one angle. 

Table 3 

Breakdown of student responses on angle magnitudes (GANG2 and GANG4) 

Score Trial Data (n=230) Project Data (n=433) 

GANG2 Yr 7 Yr 8  Yr 9  Yr 10  Yr 7 Yr 8 Yr 9 Yr 10 

 n=83 n=90 n=31 n=26 n= 171 n= 204 n= 37 n= 21 

0 14.5 44.4 29 11.5 47.4 39.7 35.1 9.2 

1 67.5 35.6 35.5 42.3 33.9 27 35.1 9.5 

2 6 7.8 22.6 7.7 7.6 9.3 5.4 14.3 

3 3.6 10 9.7 23 6.4 10.3 10.8 4.8 

4 8.4 2.2 3.2 15.4 4.7 13.7 13.5 61.9 

Score Trial Data (n=157) Project Data (n=270) 

GANG4 Yr 4 Yr 5  Yr 9  Yr 10  Yr 7 Yr 8 Yr 9 Yr 10 

 n=31 n=59 n=30 n=37 n= 23 n= 113 n= 32 n= 102 

0 83.9 20.3 27.6 37.8 17.4 18.6 43.8 5 

1 16.1 47.5 27.6 10.8 43.5 38.1 34.4 9.8 

2 0 25.4 13.8 27 8.7 23 9.4 21.6 

3 0 5.1 34.5 10.8 21.7 17.7 6.3 33.3 

4 0 1.7 0 13.5 8.7 2.7 6.3 30.4 
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Many of the irrelevant responses for GANG4 were from the primary years 4 and 5, 

suggesting that these students may not have learned this concept. The trial data showed that 

some of the responses were far from the correct answers. Students either solved the problem 

based on physical appearance - ‘it looks like a right angle… (90°, 43°, 180° for GANG2)’, 

made obscure comments such as ‘use a pencil (90°, 110°, 155°)’, or wrote ‘60°, 70°, 90°, 

140° the sum of all the angles = 360°’ (GANG4). A further 29 trial school students admitted 

to using a protractor for GANG2. This may be due to the teacher’s oversight or assumption 

that it was inaccessible by the students or because they have no strategies otherwise. Despite 

its availability, only two students were able to provide the correct answers.  

A 45° angle was the easiest to deduce by using right angle as a benchmark. Using 

existing angle knowledge as benchmark did not always work however and the Year 9 and 

Year 10 students tended not to provide a reason for GANG4: 

Year 7: You work out the angles by knowing where 90° is and if the angle is smaller then you take 

a given between 0° and 90°. If the angle is bigger than 90° and smaller than 180° then you 

guess what the angle might be. I then checked with a protractor to see how far off I was 

(34°, 96.5°, 135°). 

Year 10: They all need to equal to 180 (wrote 20°, 30°, 130°) 

Year 9: d and e has the same size angle as you can see, f as everyone knows that it is 90° because 

it’s a right angle and g is an obtuse, which is 180° (wrote 45°, 45°, 90°, 180°). 

 Discussion 

Angle is the foundation for much of geometry and trigonometry and applicable in many 

daily activities, yet many students did not demonstrate understanding of the concept nor 

ability to reason about angle size. Looking within the overall geometric framework at the 

student responses to the question requiring reasoning about angle measurement in more 

detail gave an indication of the development of reasoning about angle. 

Students operating in Zones 1 and 2 of the geometric learning progression usually did 

not show evidence of identifying the meaning of angle in any useful way. When they did use 

the term angle it was in reference to a right angle, often incorrectly. They did not use angle 

properties at all in identifying shapes. Students in Zone 3 were identifying right angles and 

in Zone 4 some of the students were referring to acute and obtuse angles though they were 

still not correctly giving many angle magnitudes with the exception of a right angle. By Zone 

5 the students were attempting to reason about the angle magnitudes and were identifying 

the magnitudes of some of the angles correctly, usually in relation to a right angle. Diagrams, 

calculations and connecting language were beginning to appear. In Zone 6, the students were 

correctly identifying angle magnitudes, but their reasoning tended to relate just to the right 

angles and was incomplete. The few students who responded in Zones 7 and 8 were able to 

correctly identify the angles and explain their reasoning using a combination of diagrams 

and calculations integrated with words.  

Relating this to the overall learning progression for geometric reasoning indicates that 

for reasoning about angle measurement there appeared to be five stages 

1. Informal reasoning based on appearances (Zones 1-3): This encompasses the 

development of the concept from thinking of angles as lines or lengths through to 

identifying angles as corners and visually recognising 90° angles.  

2. Informal and insufficient formal reasoning (Zone 4): Reasoning about magnitudes as 

being greater or less than a right angle and assigning magnitudes accordingly. 

3. Emerging analytical reasoning (Zone 5): Deducing and arguing 45° angles in relation to 

a right angle, often with an accompanying diagram or calculation. 



Seah and Horne 

352 

4. Relational-inferential property-based reasoning (Zone 6): Correctly identifying angles 

and giving reasoning for at least some of them usually with some attempt at using 

diagrams and connecting language, often with some calculation. 

5. Emerging deductive and logical inference-based reasoning (Zone 7-8): Correct 

identification of angles reasoned with supporting diagrams, calculations and integrating 

connecting language.  

The descriptions here are in the context of the questions that were asked. The final stage 

would be moving to full deductive reasoning and proof, but we have no evidence of this 

stage as the questions did not seek a response at this level. Nevertheless, the results show 

that many Australian students in our sample across all states are unable to do what the 

curriculum expects them to do. Learning progression research allows researchers to identify 

what learners can do, and what needs to be done to move their learning forward. The stages 

as described here contributed to the development of advice for teaching reasoning about 

angle measurement. Further research is needed to investigate this progression and expand it 

more fully to encompass the whole of angle measurement. 
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